
DEFEATING ANTI-FORENSICS IN CONTEMPORARY COMPLEX THREATS RODIONOV & MATROSOV

1VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

DEFEATING ANTI-FORENSICS
IN CONTEMPORARY COMPLEX

THREATS
Eugene Rodionov & Aleksandr Matrosov

Eset, Slovakia

Email {rodionov, matrosov}@eset.sk

ABSTRACT
Forensic analysis plays a crucial role in cybercrime group
investigation as it allows investigators to obtain such
information as bot confi guration data, C&C URLs, payload,
stolen data and so on. Some of the modern malware falling into
the class of complex threats employs various tricks to resist
forensics and conceal its presence on the infected system. This
paper will present technical and in-depth analysis of the most
widely used anti-forensic technique, the implementation of
hidden encrypted storage, as used by complex threats currently
in the wild:

• Win64/Olmarik (TDL4)

• Win64/Olmasco (MaxSS)

• Win64/Rovnix/Carberp

• Win32/Sirefef (ZeroAccess)

• Win32/Hodprot.

These complex threats use hidden encrypted storage areas to
conceal their data and avoid relying on the fi le system
maintained by the operating system. In this paper we will focus
on the details of hidden storage implementation as well as the
ways in which it is maintained within the system by various
kinds of malware. The analysis begins with the initialization
procedure and the mechanisms behind it. It is shown which
system mechanisms are used to store and retrieve data from the
hidden container and the degree to which the malware depends
on them. Close attention is paid to the self-defence mechanisms
employed by the malware in order to conceal the content kept in
its hidden storage areas and protect those contents against
modifi cation by the system or by security software. In addition, a
detailed description of the hidden fi le system is presented for
each threat considered, as well as a comparison of its features
with the other threats analysed here.

To conclude the paper, an approach is presented on the retrieval
of data from hidden storage. We will discuss the steps that
should be taken to defeat self-defence mechanisms, locate
hidden storage on the hard drive and read plain data.

ANTI-FORENSIC FEATURES
Nowadays there are some malware families that strongly resist
forensic analysis. There are different means of counteracting
malware detection and removal from systems: these include
encryption and obfuscation of the C&C communication protocol,
encryption of fi les containing payload and confi guration
information, and so on. In this paper we concentrate on one of

the most advanced features intended to impede forensics found
in modern in-the-wild complex threats – namely, implementing
hidden encrypted storage.

At the heart of this relatively new technology lies the
implementation of a hidden virtual storage device with
transparent encryption of the data being read or written to. This
allows malware employing such a technology to gain the
following advantages:

• keeping its data secret and stealthy

• providing a payload with a fairly standard interface in order
to store information and to retrieve it from storage

• bypassing security software.

Covert storage

The main point of maintaining hidden storage in the system is
not just to provide confi dentiality of the information being stored
but also to conceal the very presence of the data. More often than
not, malware keeps its data in encrypted fi les on the hard drive
using the fi le system maintained by the operating system, and
that eventually reveals its presence in the system. In the case of
hidden storage as described here, however, there is usually no
fi le available for analysis in the OS fi le system. None of the data
related to the malware are located outside the fi le system and are
encrypted. In such a case it is quite diffi cult to spot the presence
of the malware based on the examination of a disk image, as
often takes place during forensic analysis.

Standard interface

Access to the data stored on the hard drive is usually through the
standard API using calls such as:

• CreateFile/CloseHandle

• ReadFile/WriteFile

• SetFilePointer.

Alternatively, any other system routines may be used, such as
GetPrivateProfi leString, WritePrivateProfi leString, and so on. As
a result, the development of a payload module doesn’t require
knowledge of any specifi c technologies. Data kept inside hidden
storage can be accessed using standard system routines.

Hidden storage architecture

The general architecture of hidden storage implementation is
presented in Figure 1. Some complex threats locate and allocate
space on the hard drive – usually at the end of it, where they
store the image of the hidden fi le system containing malicious
data. Usually there is some free space – up to several MB – to be
found at the end of the hard drive which isn’t used by the system.

To access the data the malware performs low-level read/write
operations, usually using the interface provided by the storage
miniport kernel-mode driver located at the very bottom of the
storage device driver stack [1]. By sending IRP_MJ_
INTERNAL_DEVICE_CONTROL requests to the miniport
driver, malware is able to read/write sectors of the hard drive and
thus maintain its hidden fi le system.

DEFEATING ANTI-FORENSICS IN CONTEMPORARY COMPLEX THREATS RODIONOV & MATROSOV

2 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

Malicious kernel-
mode driver

Hidden
storage

Malware payload

File system

Physical storage
interface

Hard drive

Storage
volume

OS File
system driver

OS storage device driver stack

Hidden
area

Applications

kernel-mode address space

user-mode address space

Figure 1: Hidden storage implementation architecture.

To expose the hidden storage to a payload which is executed in
user-mode address space, the malicious kernel-mode driver
creates a device object representing the hidden volume, through
which the data may be read, or written to the hard drive. The
payload operating in user-mode address space accesses this
device object by its name, which in most cases is randomly
generated.

Some of the complex threats considered in this paper protect the
area of the hard drive corresponding to the hidden fi le system
from being read or overwritten. In order to do this the malware
hooks the IRP_MJ_INTERNAL_DEVICE_CONTROL handler
of the lowest driver object in the storage driver stack. This is
usually done either by hijacking the pointer to the corresponding
driver object (Olmarik) or by overwriting the pointer in the
MajorFunction table (Olmasco, Rovnix).

Win64/Olmarik

This family of malware (which is also often referred to as the
TDL4 [2, 3, 4, 5] bootkit) is the successor to the notorious
rootkit TDL3 [6, 7]. It inherits from its predecessor the ability to
store both its payload and its confi guration data by stealth. It
relies on the hidden storage architecture depicted in Figure 1. In
order to do this it reserves some space at the end of the hard
drive where it establishes a hidden, encrypted partition in the
layout illustrated in Figure 2.

TDL4’s hidden fi le system starts with the root directory which
is stored in the fi rst sector (according to the direction in which
the fi le system grows) and has the following layout:

typedef struct _TDL4_FS_ROOT_DIRECTORY

{

 // Signature of the block

 // DC - root directory

 WORD Signature;

 // Set to zero

 DWORD Reserved;

 // Array of entries corresponding to fi les in FS

 TDL4_FS_FILE_ENTRY FileTable[15];

}TDL4_FS_ROOT_DIRECTORY, *PTDL4_FS_ROOT_DIRECTORY;

Each fi le listed in the root directory is described by the
following structure:

typedef struct _TDL4_FS_FILE_ENTRY

{

 // File name - null terminated string

 char FileName[16];

 // Offset from beginning of the fi le system to fi le

 DWORD FileBlockOffset;

 // Reserved

 DWORD dwFileSize;

 // Time and Date of fi le creation

 FILETIME CreateTime;

}TDL4_FS_FILE_ENTRY, *PTDL4_FS_FILE_ENTRY;

The data corresponding to fi les in the hidden fi le system is
stored in sectors with the following layout:

typedef struct _TDL4_FS_BLOCK

{

 // Signature of the block

 // DC - root directory

 // FC - block with fi le data

 // NC - free bock

 WORD Signature;

// Size of data in block

 WORD SizeofDataInBlock;

 // Offset of the next block relative to fi le system
start

 WORD NextBlockOffset;

 // File table or fi le data

 BYTE Data[506];

}TDL4_FS_BLOCK, *PTDL4_FS_BLOCK;

Figure 3 illustrates which device object is used to access the
data stored on the hard drive. The device object with the name
‘\Device\XXXXXXXX’ is used as a volume containing all the
fi les related to the malware. It is linked with the second device
object representing hidden storage via the VPB (Volume
Parameter Block) system structure.

So as to protect the data from forensic analysis, TDL4 employs
transparent encryption. Each sector written to the hidden fi le
system is encrypted with the RC4 cipher. TDL4 uses a four-byte
key which is equivalent to the LBA (Logical Block Address) of
the sector being written.

TDL4 protects the contents of the hidden fi le system by
hijacking the pointer to the driver object of the lowest device
object in the storage device driver stack. As a result, when

TDL4 Hidden FS

Growth direction

Disk partitions

One
sector

One
sectorVariable length Not more than 8 Mb

In
fe

ct
ed

 M
BR

Figure 2: TDL4 hidden fi le system location.

DEFEATING ANTI-FORENSICS IN CONTEMPORARY COMPLEX THREATS RODIONOV & MATROSOV

3VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

someone/something other than the bootkit attempts to read or
write sectors belonging to the hidden fi le system area, the
malware intercepts the I/O request and zeroes the destination
buffer or ignores the writing attempt.

Win64/Olmasco

Olmasco [8] is a different example of a complex threat that
takes advantage of using customized hidden storage. It operates
in a pretty similar way to TDL4 and locates its hidden partition
at the end of the hard drive. Compared to TDL4 its fi le system is
more mature and allows the detection of fi le corruption or
unauthorized modifi cation by checking its CRC32 checksum
code. Here are the structures describing the Win64/Olmasco fi le
system:

typedef struct _OLMASCO_FS_ROOT_DIRECTORY

{

 // Signature of the block

 // DC - root directory

 DWORD Signature;

 // Set to zero

 DWORD Reserved1;

// Set to zero

 DWORD Reserved2;

// Set to zero

 DWORD Reserved3;

// Size of the fi le system cluster

 DWORD ClusterSize;

// Size of fi le table in clusters

 DWORD SizeOfSysTableInClusters;

// Size of fi le table in bytes

 DWORD SizeOfSysTableInBytes;

 // Checksum of fi le table

DWORD SysTableCRC32;

 // Array of entries corresponding to fi les in FS

 OLMASCO_FS_FILE_ENTRY FileTable[];

}OLMASCO_FS_ROOT_DIRECTORY, *POLMASCO_FS_ROOT_
DIRECTORY;

Each fi le listed in the root directory is described by the
following structure:

typedef struct _OLMASCO_FS_FILE_ENTRY

{

 // File name - null terminated string

 char FileName[16];

 // Offset from beginning of the fi le system to fi le

 DWORD OffsetInClusters;

 // Size of the fi le in clusters

 DWORD SizeInClusters;

 // Size of the fi le in bytes

 DWORD SizeInBytes;

 // Checksum

 DWORD Crc32;

}OLMASCO_FS_FILE_ENTRY, *POLMASCO_FS_FILE_ENTRY;

The contents of the fi le system are protected by the RC4 cipher
as well as by the hooking of the IRP_MJ_INTERNAL_
DEVICE_CONTROL handler. In contrast to the Win64/Olmarik
bootkit, this kind of malware overwrites the pointer to the
handler in the MajorFunction table of the corresponding driver
object.

Win64/Rovnix/Carberp
The Win64/Rovnix bootkit [4] family uses a VBR (Volume Boot
Record) modifi cation technique [9] to infect the system and get
itself loaded ahead of the operating system. There are three
modifi cations of the bootkit, one of which was used in the
Carberp banking trojan. Table 1 summarizes the differences and
similarities between these modifi cations.

Functionality Rovnix.A Carberp
with bootkit

Rovnix.B

VBR modifi cation

Polymorphic VBR

Kernel-mode driver
encryption
algorithm

Custom
(ROR +
XOR)

Custom
(ROR +
XOR)

Custom
(ROR +
XOR)

Hidden fi le system
type

FAT16
modifi cation

FAT16
modifi cation

Hidden fi le system
encryption
algorithm

RC6
modifi cation

RC6
modifi cation

Table 1: Rovnix bootkit family comparison.

The payload injected into user-mode processes is stored in the
kernel-mode driver binary on the hard drive and is described
with a structure of the following type:

typedef struct _PAYLOAD_CONFIGURATION_BLOCK

{

 DWORD Signature; // “JFA\0”

 DWORD PayloadRva; // RVA of payload

 DWORD PayloadSize; // Payload start

DWORD NumberOfProcessNames; // Number of NULL-
terminated strings in ProcessNames

 char ProcessNames[0]; // Array of NULL-
terminated strings describing target

Figure 3: TDL4 fi le system device relationship.

DEFEATING ANTI-FORENSICS IN CONTEMPORARY COMPLEX THREATS RODIONOV & MATROSOV

4 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

 // processes to inject the
payload

}PAYLOAD_CONFIGURATION_BLOCK, *PPAYLOAD_CONFIGURATION_
BLOCK;

The latest modifi cation of the bootkit, Win64/Rovnix.B [10],
employs a hidden fi le system to store confi guration data and
payload. The malware occupies some space either at the
beginning or at the end of the hard drive. If there are 0x7D0
(2000 in decimal) free sectors or more before the partition with
the lowest starting LBA, then Win64/Rovnix.B locates the
hidden partition right after the MBR (Master Boot Record)
sector and it extends for 0x7D0 sectors (almost 1MB). If there is
not enough space at the beginning of the hard drive the malware
tries to locate the hidden partition at its end. The
Win64/Rovnix.B bootkit employs a modifi cation of the FAT16
fi le system as the layout of its hidden partition.

The malware implements on-the-fl y encryption with a
modifi cation of the RC6 block cipher in ECB (Electronic Code
Book) mode and a key length of 128 bits. The key is stored in
the last 16 bytes of the very fi rst sector of the hidden partition.
Win64/Rovnix.B also hooks the IRP_MJ_INTERNAL_
DEVICE_CONTROL handler to protect its hidden fi le system
from being read or modifi ed by other software in a similar way
to Win64/Olmasco.

Win32/Sirefef (ZeroAccess)

The ZeroAccess rootkit is also known to be strongly resistant to
forensic analysis due to its implementation of a hidden encrypted
fi le system. There are two modifi cations of ZeroAccess, each of
which employs rather a different approach to storing malicious
components. Both approaches are described in [11, 12].

The latest modifi cation of malware intended for running on
32-bit systems creates a subdirectory ‘C:\windows\system32\
$NtUninstallKBXXXXXXXX’ where XXXXXXXX is a
randomly generated 32-bit integer. The directory created is used
to store the rootkit’s payload and confi guration information. To
restrict access to the directory and the fi les contained within it,
the malware creates a symbolic link to the folder and deletes all
entries from its ACL (Access Control List). As a result of these
manipulations, the folder can still be accessed using its
symbolic link name and by the System account which owns the
created folder. In addition, Win32/Sirefef implements
transparent encryption of all the fi les kept in hidden storage.

Win32/Hodprot

Win32/Hodprot [13] is a specialized downloader designed to
distribute banking trojans in the Russian region. In particular, it
was used to distribute one of the most dangerous banking
trojans, Win32/Carberp [14, 15]. It was especially designed to
resist forensic analysis and to withstand or evade security and
anti-virus software. Win32/Hodprot has a complex architecture
and consists of several modules including the kernel-mode
driver used to inject the payload into user-mode address space.

The payload downloaded from the C&C server is stored in the
registry, as is the bot main module and confi guration
information, but they are not found as fi les on disk. As a result,
the bot’s main module, responsible for communicating with

C&C servers, never appears as a fi le anywhere in the OS fi le
system. This makes investigation of cybercrimes committed
using this bot quite challenging. Table 2 contains the registry
values of the HKLM\SOFTWARE\Settings registry key used by
Win32/Hodprot to store both its components and the
downloaded payload.

Value name Description

CoreSettings
The main module of the bot communicating
with C&C servers, downloading and
executing payload

ErrorControl
Loader code responsible for initializing IAT,
relocations etc. of main module during
injection by kernel-mode driver

HashSeed List of C&C URLs

Table 2: Registry key values used by Win32/Hodprot.

All these registry values are encrypted with a custom encryption
algorithm. This consists of sequential XOR-ing and ROR-ing of
each byte with the corresponding byte of the key. The key is
generated based on the information obtained from the ProductId
value of the registry key HKLM\SOFTWARE\Microsoft\
Windows\CurrentVersion.

HIDDEN FS READER TOOL
In the course of our research into complex threats, we have
developed a tool intended to recover the contents of hidden
storage used by such complex threats as:

• Win32/Win64/Olmarik (TDL3/TDL3+/TDL4)

• Win64/Olmasco (MaxSS)

• Win64/Rovnix/Carberp)

• Win32/Sirefef (ZeroAccess).

The tool can be obtained at [16]. Figure 4 presents a screenshot
of the tool’s output.

Figure 4: Output of hidden FS reader tool.

CONCLUSION
Nowadays, complex threats employ a range of sophisticated
mechanisms to counteract forensic analysis. In this paper we

DEFEATING ANTI-FORENSICS IN CONTEMPORARY COMPLEX THREATS RODIONOV & MATROSOV

5VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

have considered one of the most advanced anti-forensic
techniques used by complex threats in the wild – hidden
storage. Such malware families as Win64/Olmarik,
Win64/Olmasco and so on take advantage of the technique to
secretly store their payload and confi guration information. The
paper contains details of the use of this approach by specifi c
malware. Descriptions of hidden fi le system layouts have been
presented, along with their protection mechanisms. As a
countermeasure to the hidden storage technique the authors
have developed a tool intended for the retrieval of hidden
storage content as built into the most widespread complex
threats. This utility is freely available for downloading.

REFERENCES

[1] Storage Miniport Drivers. MSDN Library.
http://msdn.microsoft.com/en-us/library/windows/
hardware/ff566993(v=vs.85).aspx.

[2] Rodionov, E.; Matrosov A. The Evolution of TDL:
Conquering x64. http://go.eset.com/us/resources/
white-papers/The_Evolution_of_TDL.pdf.

[3] Rodionov, E.; Matrosov, A.; Harley, D. Bootkit Threat
Evolution in 2011. http://blog.eset.com/2012/01/03/
bootkit-threat-evolution-in-2011-2.

[4] Matrosov, A.; Rodionov, E.; Harley, D. TDL4 reloaded:
Purple Haze all in my brain. http://blog.eset.com/
2012/02/02/tdl4-reloaded-purple-haze-all-in-my-brain.

[5] Matrosov, A.; Rodionov, E. Defeating x64: Modern
Trends of Kernel-Mode Rootkits. http://go.eset.com/us/
resources/white-papers/Ekoparty2011_preso.pdf.

[6] Matrosov, A.; Rodionov, E. Rooting about in TDSS.
Virus Bulletin, October 2010. http://go.eset.com/us/
resources/white-papers/Rooting-about-in-TDSS.pdf.

[7] Matrosov, A.; Rodionov, E. TDL3: The Rootkit of All
Evil? http://go.eset.com/us/resources/white-papers/
TDL3-Analysis.pdf.

[8] Matrosov, A.; Rodionov, E.; Harley, D. TDL4 rebooted.
http://blog.eset.com/2011/10/18/tdl4-rebooted.

[9] Matrosov, A.; Rodionov, E.; Harley, D. Hasta La Vista,
Bootkit: Exploiting the VBR. http://blog.eset.com/
2011/08/23/hasta-la-vista-bootkit-exploiting-the-vbr.

[10] Rodionov, E.; Matrosov, A.; Harley, D. Rovnix
Reloaded: new step of evolution. http://blog.eset.com/
2012/02/22/rovnix-reloaded-new-step-of-evolution.

[11] Wyke, J. The ZeroAccess rootkit under the microscope.
http://sophosnews.fi les.wordpress.com/2012/04/
zeroaccess2.pdf.

[12] Giuliani, M. ZeroAccess – an advanced kernel mode
rootkit. http://pxnow.prevx.com/content/blog/
zeroaccess_analysis.pdf.

[13] Rodionov, E.; Matrosov, A.; Volkov, D. Hodprot: Hot to
Bot. http://go.eset.com/us/resources/white-papers/
Hodprot-Report.pdf.

[14] Matrosov, A.; Rodionov, E.; Volkov, D.; Harley, D.
Win32/Carberp When You’re in a Black Hole, Stop
Digging. http://go.eset.com/us/resources/white-papers/
carberp.pdf.

[15] Matrosov, A.; Rodionov, E.; Volkov, D.; Kropotov, V.
Carberp Evolution and BlackHole: Investigation
Beyond the Event Horizon. http://www.eset.com/
fi leadmin/Images/US/Docs/conference_papers/
carberp_evolution_and_black-hole.pdf.

[16] Hidden FS reader tool.
http://eset.ru/tools/TdlFsReader.exe.

