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Abstract 

As the number of security suites increases, so does the need for accurate tests to assess detection 

capability and footprint, but accuracy and appropriate methodology gets harder. Good tests help 

consumers to make better-informed choices, and vendors to improve their software. But who really 

benefits when vendors tune products to look good in tests instead of maximizing their efficiency on 

the desktop? 

 

Conducting detection testing may seem as simple as grabbing a set of (presumed) malware and 

scanning it. But simplicity isn't always easy. Aspirant detection testers typically have limited testing 

experience, technical skills and resources. Constantly recurring errors and mistaken assumptions 

weaken the validity of test results, especially when inappropriate conclusions are drawn, as when 

likely error margins in the order of whole percents are ignored, translating into exaggerated or even 

reversed ranking. 

 

We examine (in much more detail than previous analyses) typical problems like inadequate, 

unrepresentative sizing of sample sets, limited diversity of samples, the inclusion of garbage and 

non-malicious files (false positives), set into the context of 2010’s malware scene. 

 

Performance and resource consumption metrics (e.g. memory usage, CPU overhead) can also be 

dramatically skewed by incorrect methodology such as separating kernel and user data, and poor 

choice of "common" file access. 

 

We show how numerous methodological errors and inaccuracies can be amplified by 

misinterpretation of the results. We analyse historical data from different testing sources to 

determine their statistical relevance and significance, and demonstrate how easily results can 

drastically favour one tested product over the others. 

Introduction 

This paper aims to answer the basic question – does AV testing provide an incentive for security 

vendors to improve the products themselves, thus enhancing computer security globally? Or is it 

more likely to be the exact opposite – spending too much time focused on achieving good 

performance in tests, responding to the expectations of users and marketing departments (who over 

time have become accustomed to these testing nuances and themselves prefer clearly differentiated 

rankings expressed by percentages and charts), rather than introducing meaningful improvements to 

the product for actual use in the battlefield?  

 

We’ll first focus on the most common area of problems in testing – the tests of detection of 

malicious software – and see how useful their results are (or are not). We describe a general 

approach which can be used for evaluating detection and which we would expect to provide more 



useful results than the ones generally employed by current tests. Afterwards, we dive into the area 

of statistics and see what can be said about collections used in current tests. The second section 

looks at certain procedural issues, related to new methods employed by antivirus products, and the 

effect they have on the results. Following that, we move on from detection testing to look at the 

other commonly tested factors - performance and resource usage. 

 

Detection testing - the theory 

 

There is little doubt that the detection of malicious programs is the most important property of 

software describing itself as anti-virus or anti-malware. It is therefore one of the most commonly 

tested and mis-tested features of such software – especially since it seems to many that such testing 

is very easy, even trivial, to conduct. After all, what can be difficult about: 

 

- Collecting a large group of (presumed)  malicious files 

- Running the tested product(s) against those samples and seeing how many of them they 

detect  

- Putting the results into a nice spreadsheet? 

 

Even a properly trained monkey could do that... or could it? Let's take a deeper look at how messy 

things can get. 

Collecting a large set of malicious files 

How large should the sample set be? These days, we're seeing tens of millions of unique malicious 

files each year. Intuitively, in order to achieve good coverage of the “real” world, the number of 

tested samples should not be significantly lower (as in, three orders of magnitude or more). Of 

course, there are specialized types of tests in which the nature of the test implies that the size of the 

collection has to be considerably smaller – like, the one for obtaining VB100 award – but those tests 

concentrate on different type of problem, where the total population is much smaller than the 

totality of malicious objects in the whole world. 

 

Most of the time, it's very easy to collect quite a few malicious files, simply by visiting known 

malicious websites and allowing the computer to get infected; or by plugging it into the Internet 

without applying the patches that a cautious user applies in order to counter known security 

vulnerabilities. Respectable antivirus-testing organizations also usually get actual samples from 

mainstream AV companies as part of the sample-sharing initiatives that enable the industry to offer 

its customers better protection. Yet, from time to time, some “creative” testers decide that files 

provided by a tested vendor could be engineered to bias the results in favour of that particular 

competitor. Those who do not learn from mistakes of others are bound to repeat them – either by 

reinventing something along the lines of the infamous Rosenthal virus simulator, or even by 

producing their own malicious programs. The latter has always been a matter of heated discussion 

[1], while the former is just an outright demonstration of not understanding how antiviruses actually 

work these days – it was an attempt to simulate known viruses by abstracting a “signature” on the 

absurd assumption that every antivirus package uses the same signature. 

 

Collecting a set of malicious files always generates a question as to how to winnow the chaff from 

the grain. Most sources of “malicious” files are not pure – there is always some proportion of files 

which are corrupted, non-functional (non-viable), belong to the grey zone between malicious and 

clean, or are completely benign (innocent) files. In an ideal world, such files would be identified by 

the tester at the beginning of the process, before executing even one of the antiviruses in the test 

environment. Unfortunately, that would require the tester to be more skilled in determining what is 



or isn’t malicious than all the tested products – in which case the tester might be better employed 

producing a better security product in his own right. 

 

Thus, the usual, rational mode of operation is reversed – first, the set of files is collected, including 

such a proportion of inappropriate samples. These files are run past the tested products and the 

burden of removing the chaff is transferred to the antivirus vendors who are forced to “defend” 

themselves by pointing out which files they don't detect should not have been a part of the set in the 

first place. In other words, it's a model based on presumption of guilt – unless you can prove you 

really should not be detecting the files, you're guilty of not detecting them. 

 

Is that a good approach? Well, it certainly is very convenient from the tester's point of view. It is 

also very efficient in hampering the antivirus vendors' real work – especially since the percentage of 

unsuitable files is generally quite high – often reaching percentages in double figures. No, that 

doesn't mean that the rest of the samples are grain (i.e. valid) – only that they haven’t been proven 

to be invalid. The number of man-hours vendors have to spend on this is getting higher and higher, 

and the law of diminishing returns is very applicable in this case. A proportion of the problematic 

files are usually very easy to identify. Others are more difficult to identify, but still manageable by 

the use of advanced technology. Yet other files might really require the intervention of an 

experienced human malware analyst to determine whether they actually are malicious or not – after 

all, if the problematic files were that easy to identify, they would have been detected in the first 

place. 

 

Having the proper collection of infected files is, of course, only a part of the test. Unless one also 

takes into account the quantity of false alarms produced by the product when run against a 

collection of clean files, the test is going to be essentially useless, regardless of the quality and size 

of the malicious collection. After all, even a simplified version of the Perfect Antivirus by Dr. 

Solomon (Echo %1 is infected by a virus!!!) would win such a test, regardless of its contents. Yes, 

an antivirus which declares everything to be malicious is going to get full marks in a test that 

doesn’t care about false positives. 

 

The issues we’re discussing can be characteristic of experienced and renowned testers – so this is 

more of an example of how good things can be, than how bad. In general, the more tests are there, 

the more they look like a Denial-of-Service attack on the antivirus vendors. 

 

For now, though, let's assume that the tester was able to collect a set which is reasonably free of 

inappropriate or innocent files and that he has unleashed the antivirus products under test on that 

collection. 

What do the test results really say? 

The obvious answer is – they tell us how many files from the collection a particular product 

detected under the conditions of that particular test. Everything else is a matter of extrapolation and 

interpretation. If one doesn't look at the complete picture (which means having access to all the 

malicious files that existed at the time of the test), any interpretation of the results along the lines of 

“This product detects that X percent of all the malicious programs that existed” is going to have a 

smaller or larger error margin, and ascertaining that error margin is largely guesswork. Predicting 

the future success rate of a product is even less of an exact science. 

 

Igor Muttik wrote about this problem almost nine years ago [2], yet the results still seem to be 

largely unconsidered or misunderstood by quite a few testers. We'll look at this problem through 

2010 eyes.  

In most cases, the final test results are presented in a form which is easy to comprehend for a 

layman – the detection rates of products are written as percentages and put into a spreadsheet next 



to the names of tested products. Then, one click of the “Sort!” button reveals who gets the first 

prize. This is sometimes followed by further “simplification” of the results –for example, by 

removing the actual detection rates and only retaining the final order of the products. 

 

Obviously, the less information the result sheet provides, the more opportunity is left for the reader 

or publisher to (mis-)interpret the conclusions. In general, it seems that the less information is 

given, the more room for doubt there is about the tester’s qualifications and – a report stating that 

“Vendor X is the best” without any supporting evidence is more likely to indicate an incompetent 

tester than a detailed report describing the methodology, source of information and detailed results. 

AMTSO (the Anti-Malware Testing Standards Organization) has published several documents on 

these issues [3,4], ranging from best practices and guidelines for various types of testing to 

discussion of some of the ethical questions related to such tests. We won't be going deeper into the 

problem of presentation of the results here, but rather concentrate on the most important question: 

What is the best way to measure detection rates? 

The basic question we need to ask is – what do we actually mean by “detection rate”? The answer is 

more complicated than it might seem at the first glance. The usual mechanism of testing detection 

by taking a “snapshot” of product detection, by scanning a static collection of files was applicable 

enough in earlier times, when the state of the threat landscape changed very slowly compared to 

today’s threatscape. It's been suggested that one necessary ingredient is the temporal information [5] 

(how results change over time), especially when we consider the rapid updates provided by cloud-

based technologies (but more on that later). Another important aspect concerns the users (or rather 

their computers) – some might be more prone to certain types of attacks than others. For example, 

servers are less likely to be compromised via browser vulnerabilities, while computers running Mac 

OS are themselves immune from purely Win32-based viruses (unless, of course, they also host 

some form of Windows emulation, and ignoring (for our present purposes) the issue of 

heterogeneous malware transmission). . 

In order to avoid ambiguity, we'll present the proposed method in mathematical notation. This is a 

synthesis of commonly used approaches that already exist, and within appropriate limits, these 

approaches can be represented simply in this mathematical form. It is, however, capable of 

demonstrating a wider range of scenarios. 

We'll be considering three (non-empty) sets – a set U of users for whom this particular test should 

be relevant, a set of tested products P and a set A of malicious attacks. For our purposes, the attack 

is an attempt to subvert user's computer in undesirable way (for example, stealing his information, 

performing denial of service, or one of many other possibilities). We only consider attacks which 

would succeed, if the user didn't use any product from the set P – thus, visiting a website exploiting 

a vulnerability specific to Internet Explorer is not considered here as an attack when the visitor is 

using a text-based browser like Lynx. Also, protecting the computer from threats that have no 

relevance is not something that should be rewarded – it's more important to protect from real 

dangers. Of course, it’s justifiable to declare the attack to be successful if the malicious program 

would have “visited” the computer – thereby reducing the concept of “attack” to the more common 

description. 

There will always be one-to-one correspondence between attacks and files (or samples) which 

caused them: if the scenario consists of a chain of events caused by different files, they will be 

considered separate attacks, as each can (and most likely should) be detected and prevented. For 

example, visiting a website where an injected IFRAME is followed by access to Javascript which in 

turn loads a malicious SWF file will be considered as three separate attacks.  This is because at each 

stage, one component could be replaced by another, undetected by the current version of a product 

under test. 

Finally, without loss of generality, we'll treat the time t as discrete and every event as happening 



inside the time-span of length T. 

Definition: Indicator function Incident(u, a, t) is equal to 1 if user u was subject to attack a at time t 

and zero otherwise. Indicator function Detect(p, a, t) is equal to 1 if product p would detect attack a 

at time t. 

The first function captures the notion of “when was who attacked by what”. We'll assume that each 

user was attacked at least once. We're also assuming that the products work consistently with 

respect to the users – if the attack is detected by the product for one user at some point in time, it 

will also be detected for other users at the same time. Note that we're not implying consistency over 

time – a product might stop detecting some type of attack or detect it only “by chance” every now 

and then. [6] Having established these two concepts, we're ready to define the functions we're 

interested in: 

 

Definition: 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒(𝑎, 𝑡) =  
1

|𝑈|
∑ 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑢, 𝑎, 𝑡)

𝑢

 

 

Prevalence tells us how large a proportion of users was affected by a particular attack at some point 

in time – the higher the proportion, the more often the attack occurred. Naturally, prevalence of a 

particular attack varies with time, in most cases starting with quick acceleration followed by slower 

decline and a long tail descending to a level almost indistinguishable from zero.  

 

Definition: 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑝, 𝑢) =  
∑ 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑢, 𝑎, 𝑡). 𝐷𝑒𝑡𝑒𝑐𝑡(𝑝, 𝑎, 𝑡)𝑎,𝑡

∑ 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑢, 𝑎, 𝑡)𝑎,𝑡
 

𝐴𝑣𝑔𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑝) =
1

|𝑈|
∑ 𝑆𝑢𝑐𝑒𝑠𝑠(𝑝, 𝑢)

𝑢

 

The first function describes the success rate of product p when stopping attacks for user u. The 

second function represents the average success rate among all users – that is, the expected value of 

the answer to the question “How successful has product p been for user u” when choosing user u 

randomly. Note that this approach treats all users equally – if one user gets attacked eight times and 

the product stops six of the attacks (success rate 75%) and the other is attacked just twice, but the 

product fails to stop either of the attacks (success rate 0%), the average success rate is 37.5% rather 

than the alternative “stopped 6 attacks out of 10” = 60% score. The reasoning behind our choice is 

that it's the user who is interested in the results of tests – so it's better to assume a uniform choice of 

user, rather than a uniform choice of attack. As a bonus, if the attacks actually are distributed 

uniformly, our value AvgSuccess will accord with the other approach. 

 

In simple terms, the value of AvgSuccess(p) estimates how well product p would help Joe User 

avoid becoming a victim of a successful attack, and thus might be more useful for him than the raw 

detection count. There is one important disadvantage, though – it's almost-a Catch-22 situation 

when obtaining the values of the Incident function. In order to know that there was an attack, there 

has to be some means of detecting the attack. But if one of the products to be tested is used to find 

out whether there really was an attack in the first place, it will score a guaranteed point in the final 

conclusions for its Detect function too – resulting in a 100% detection score for this product in the 

end, while ignoring the possibility that it has generated false positives! [7] For now, we'll postpone 

this discussion until the next section, where we deal with the practical hurdles. 

 

It is usual to perform various simplifications in order to reduce the amount of data that needs to be 

collected or processed. First, there is the approach which assumed uniform distribution of the 

attacks among the users. This is equivalent to assuming that there is just one user who gets hit all 



the time. Since there might have been multiple users being subjected to the same attack at the same 

time in the original scenario, a common trick is to incorporate Incident(u, a, t) by Prevalence(a, t) 

into the Success formula (AvgSuccess coincides with Success in this case, as there is only one 

user): 

 

𝐴𝑣𝑔𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑝) =
∑ 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒(𝑎, 𝑡). 𝐷𝑒𝑡𝑒𝑐𝑡(𝑝, 𝑎, 𝑡)𝑎,𝑡

∑ 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒(𝑎, 𝑡)𝑎,𝑡
 

 

Still, the values of Prevalence are hard to come by: almost as hard as was the case with the Incident 

function. Thus, in many tests, this value is assumed to be equal to 1 – if the file appeared at least 

once, it becomes part of the test-set. The problem with this approach becomes apparent immediately 

– one simply needs to look a few years back into the past, when worms like Sasser were rampaging 

through the Internet. If a particular instance of Sasser was just one out of ten thousand files, not 

detecting it would amount to a negligible loss of 0.01% in the overall detection score. Yet, most 

people would be likely to consider a product as missing such a threat almost completely. In other 

words, the prevalence information is unequivocally important for producing useful results, if not 

critically necessary. 

 

Even if we overlook the lack of prevalence data in most tests, the problem outlined in [2] remains – 

using just a smaller subset of all the malicious files for the purpose of the test produces an error 

margin, which might be too large for the test results to bear any actual meaning. Let's look at this in 

more detail! 

 

Assume that there are N files in total in the test-set (in the terminology introduced above, |A|=N), 

there is only one user and the prevalence of all files is equal to 1. In other words, we're looking at 

the simplest possible case – just the count of detected files divided by the total number of files. 

Now, take a product which detects D percent of the files and run it against a collection consisting of 

M randomly chosen files from this collection. What can we expect to find? 

 

The table below summarizes the results of a simple simulation for various selections of the 

parameters, showing the average number of detected files, minimum and maximum detections 

encountered during the simulations, and the standard deviation of the results: 

 

N D M Average Minimum Maximum Std. dev 

1 million 80.00% 1 000 80.03% 75.70% 83.70% 1.25% 

1 million 80.00% 10 000 79.97% 78.81% 81.24% 0.39% 

1 million 80.00% 100 000 80.00% 79.65% 80.37% 0.12% 

1 million 80.00% 500 000 80.00% 79.88% 80.14% 0.04% 

1 million 97.00% 1 000 97.00% 95.30% 98.60% 0.54% 

1 million 97.00% 10 000 97.00% 96.39% 97.47% 0.16% 

1 million 97.00% 100 000 97.00% 96.83% 97.16% 0.05% 

1 million 97.00% 500 000 97.00% 96.94% 97.06% 0.02% 

10 million 97.00% 10 000 97.01% 96.47% 97.52% 0.17% 

10 million 97.00% 100 000 97.00% 96.85% 97.20% 0.05% 

10 million 97.00% 1 000 000 97.00% 96.94% 97.06% 0.02% 

10 million 97.00% 5 000 000 97.00% 96.98% 97.02% 0.01% 

Table 1 



 

Instead of using a simulation, it is also possible to calculate the values explicitly – although letting 

someone see the random number generator produce the results is often more convincing than 

requiring them to process the calculations. Since there are D.N files which are detected by that 

particular product and (1-D).N of them which are missed, the probability of the product detecting 

exactly K files from the subset of size M is equal to: 

𝐶𝑁,𝐷,𝑀(𝐾) =
(𝐷𝑁

𝐾
)((1−𝐷)𝑁

𝑀−𝐾
)

(𝑁
𝑀

)
 

It’s not very surprising that the expected value (“average”) of this distribution is equal to (M.D), as 

can be obtained by proper manipulation of the calculation: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑁,𝐷,𝑀 = ∑ 𝐶𝑁,𝐷,𝑀(𝐾). 𝐾

𝐾

=  ∑
(𝐷𝑁

𝐾
)((1−𝐷)𝑁

𝑀−𝐾
)

(𝑁
𝑀

)
𝐾

𝐾 = 𝑀. 𝐷 

In a similar fashion, we can calculate the standard deviation: 

𝑆𝑡𝑑𝐷𝑒𝑣𝑁,𝐷,𝑀 = √𝐷. 𝑀. √
(𝑁 − 𝑀)(1 − 𝐷)

(𝑁 − 1)
 ~ √𝐷. 𝑀. √(1 −

𝑀

𝑁
) (1 − 𝐷) 

 

From statistics we know that the interval of two statistical deviations from the average to both sides 

covers about 95% of the cases, assuming that the distribution isn't too irregular (which in this case it 

isn’t). In other words, if we have one million files and test an antivirus which detects 97% of them, 

but we restrict our attention to a randomly chosen hundred thousand of them, the result is quite 

likely to fall into the interval [96.9, 97.1], but it’s surely not bound to be equal to exactly 97%. It's 

also noteworthy that, technically, we could have ended up with a detection rate as low as 70%, if we 

were unlucky enough to choose all thirty thousand of the files this product does not detect. 

Fortunately, the probability of such a choice is astronomically small if files are chosen 

randomly…Deliberate selection of the “bad” choices is another issue. 

 

The approximation of standard deviation can be used to estimate the required size of the test set. If 

E denotes the standard deviation we’d like attain, the resulting formula is 

𝑀 =
1

𝐸2

𝐷(1 − 𝐷)
+

1
𝑁

 

 

For example, if the detection rates are specified as percentages with two decimal places, we can set 

E=0.0001 divided by 2, so that the „two standard deviations“ rule allows us to rest happy, with 95% 

confidence that the result will differ from the actual value only to the first non-significant place. 

A few examples follow: 

 

N D E Calculated M 

1 million 80% 0.001/2 ~390 thousands 

10 millions 80% 0.001/2 ~600 thousands 

100 millions 80% 0.001/2 ~640 thousands 

1 million 95% 0.001/2 ~160 thousands 

10 millions 95% 0.001/2 ~190 thousands 

100 millions 95% 0.001/2 ~190 thousands 

1 million 97% 0.001/2 ~100 thousands 

10 millions 97% 0.001/2 ~120 thousands 

100 millions 97% 0.001/2 ~120 thousands 

10 millions 97% 0.0001/2 ~5.4 millions 

Table 2 



 

Interestingly, the value of M which is necessary to achieve an accuracy of one decimal place 

converges quite quickly. This is related to the fact that for a very large value of N, the denominator 

in the formula above becomes dominated by its first term, rather than the second one, as was the 

case for smaller N. Thus, the limiting size of the useful test-set can be expressed as 

 

𝑈𝑀 =
𝐷(1 − 𝐷)

𝐸2
 

 

Using a number of files above this limit is not very likely to improve the accuracy of the result for a 

particular tested product. Naturally, this assumes that the files were chosen from the whole full set 

of N files without the introduction of any statistical bias; otherwise the results might be skewed in 

either direction. 

 

 

So far, we’ve been looking at one antivirus. However, if there is more than one being tested, the 

problems can reappear, even with test-sets of such a size as described above. Using the same 

simulation as before, let’s see what happens if two competitive products of nearly equal detection 

rate are tested on the same subset. The set will consist of one million of files and we’ll choose a 

random subset of a particular size, and test both products on this subset. If the results of this test do 

not agree with the “true” detection rates (the ones corresponding to the whole set of files), we’ll 

count this as an inverse case.  Results of this simulation are summarized in the following table (each 

row representing an average of one thousand simulations): 

 

Detection rate 1 Detection rate 2 Subset size Inverse cases 

97.00% 96.90% 1 000 44.90% 

97.00% 96.90% 10 000 36.30% 

97.00% 96.90% 100 000 8.20% 

97.00% 96.90% 500 000 0.00% 

97.00% 96.80% 1 000 40.70% 

97.00% 96.80% 10 000 22.90% 

97.00% 96.80% 100 000 0.60% 

97.00% 96.80% 500 000 0.00% 

Table 3 

 

As we can see, even with 1/10 of the whole set, the results can quite often be reversed: – possibly 

too often for the test to be meaningful. Unfortunately, the number of inverse cases depends on the 

difference between the actual detection rates of the products – so if they’re very close to each other, 

it will require a very large test-set to tell them apart and put in correct order of ranking. In 

particular, we might want to fit four standard deviations in between them, in order to prevent the 

intervals from overlapping (up to the 95% confidence of “two standard deviations”, as usual). For 

example, an estimated 320,000 files or so is necessary to tell the 97% and 96.9% detections apart, 

while approximately 120,000 should suffice for 97% and 96.8%. 

 

Last, but surely not least, there is the question of content in the set that is not-actually-malicious. 

The calculations described above were based on the assumption that the files in the set are actually 

appropriate for true positive detection. In most cases, this is not really the case – the proportion of 

non-functional, clean or damaged files in the set varies quite a lot between various types of tests, 

ranging from single figure percentages to tens of percents. Some products tend to play it safe here, 



working with a “presumption of innocence” and not detecting files that are not unequivocally 

malicious, whereas others prefer the “guilty unless proven innocent” approach and declare them 

malicious. 

 

Naturally, this can pose a problem if such products compete with each other, since this results in a 

test of design philosophy rather than accurate detection. In order to model this and see how it affects 

the results, each product will be assigned a real number J(p) between 0 and 1 (inclusive), describing 

the percentage of the “junk” files product p detects. In our experience, this seems to be pretty much 

constant for each product and independent of the actual test-set. In this scenario, the original 

detection rate R(p) will need to be adjusted to  

 

𝑅′(𝑝) = 𝑅(𝑝). (1 − 𝐵) + 𝐽(𝑝). 𝐵 
 

Here, B denotes the percentage of the ballast files in the particular test. 

 

As an example, we can look at what happens if two products with actual detection rates of 99% and 

95% and J(p) equal to 0.1 and 0.8 respectively compete in a test whose B is as little as 8%. The 

adjusted detection rate of the first product will be 91.88% and for the second it’ll be 93.80%. Yes, 

the difference is astounding – not only has the second product surpassed the first, it has done so by 

quite a large margin. Even to break even (pun not intended), the ballast ratio would have to be lower 

– about 6% at most, as can be calculated from the following general formula: 

 

𝐵 =
1

1 −
𝐽(𝑝1) − 𝐽(𝑝2)

𝑅(𝑝1) − 𝑅(𝑝2)

 

 

We can also look at the problem from the other side. Imagine that a test includes three products – X, 

Y and Z. Their results from the test are summarized in table below, along with their junk-detection 

ratios (vendor X is from the “innocent unless proven guilty” camp, vendor Z from the other one; Y 

stands somewhere in between). What are the true results if we know that the test set was of 

somewhat lower quality, consisting of 20% chaff and 80% grain? A simple formula gives us the 

answer: 

𝑅(𝑝) =
𝑅′(𝑝) − 𝐽(𝑝). 𝐵

1 − 𝐵
 

 

Vendor Test result Junk detection True detection 

X 77% 5% 95.00% 

Y 81% 40% 91.25% 

Z 70% 75% 68.75% 

 

Now it should be obvious that the large fraction of ballast helps those who don’t care about 

detecting junk or actually seek it out actively (sometimes at the expense of actual malware). As a 

little bonus, product Y managed to detect more malicious files than were present in the test! 

 

All in all, detection of junk files can be used to alter the detection rate rather easily, unless the tester 

is extremely careful about excluding such files from the test-set.  

 

Detection testing - practice 

In the previous section, we saw why and how the size of the test set affects the results. 

Unfortunately, even if the test-set is well selected, validated and of appropriate size, the outcome 



might not be correct due to an incorrect methodological approach being taken during the test. New 

technologies have constantly appeared in the area of virus detection and some of them are quite 

incompatible with previous testing methodologies. 

The first of such technologies that we’ll consider is cloud-based detection of files. First of all, due 

to the nature of the cloud, the answer given at one time might not be the same as the answer given at 

another time – thus, the results are no longer repeatable [6, 8] (which is against the basic principles 

of the scientific method). Naturally, this can happen with regular (non-cloudy) products as well, 

although non-deterministic behaviour is usually considered a bug in such case, rather than being 

inherent to the method itself. 

The standard method of testing a product by setting it loose on a large collection of files can also be 

problematic. In most cases, the strength of the cloud lies in its ability to shorten the response time 

when new, as of then undetected, threats appear. Querying “the cloud” about lots of old, already 

known samples does not exercise this important feature at all – it just asks for a static, one-time 

“dump” of the information a long time after its “best before” date. 

Another popular phrase is “behavioural detection”. Quite often, this approach presented as a method 

of catching possibly harmful actions performed by a program on execution, even if the program 

itself wasn’t declared malicious by the scanning engine. Since very many malicious programs are 

already detected by other methods before they get to execute, testing the quality of behavioural 

detection itself can be difficult. Thus, one of the more common approaches used by the testers is to 

disable (or try to disable) these other methods and see whether the attacks would still be blocked by 

some form of dynamic analysis and detection. This has very little to do with real-world use of the 

products – after all, the very idea of multiple levels of defence is to have different layers co-exist in 

synergy. In itself, testing each layer separately is not a bad idea, but without knowing and 

considering the correlation between the results attributable to various layers, there is not much that 

can be said about their interrelation and integration. 

For example, if a product misses detects 95% of malicious programs using “standard” detection 

(thus missing 5% of them) and 80% via behaviour-based blocking (20% of misses), one cannot 

conclude that together, these two methods miss just 20% of 5% = 1% of all the threats, resulting in 

99% detection rate. It could well be the case that those 80% of behavioural detections are fully 

covered by the 95% of standard ”static” detections. Naturally, the same reasoning applies to any 

number of protective layers, not just two of them – without knowing the correlations between their 

detection rates, one cannot conclude anything about their final, real-world effectiveness. 

This can be seen when testing Internet content blacklisting methods. Blocking URLs or IP addresses 

known to be hosting malicious content has proven to be very efficient in certain cases. Since one 

website can be hosting various pieces of malicious code which are frequently updated, blocking the 

whole website can solve several problems at once. There are even publicly available sources (for 

example, Google’s Safe Browsing [9]) which allow anyone to place queries about potentially unsafe 

links. On the other hand, blocking a particular piece of malware blocks it regardless of its origin – 

be it a single site or a whole lot of them. Thus, it is highly likely that there is a significant overlap 

between these approaches and, just as in the example above, attempt to test them independently of 

each other prevents anyone from drawing valid conclusions about their real-life success rate using a 

combination of features. 

As with the cloud-based detections, this approach brought new problems for testing. Unlike a static 

collection of malicious files, which do not change by themselves, the content of malicious websites 

varies over time, so they need to be tested repeatedly – but without being noticed. Otherwise, the 

website might stop serving the malicious content completely or even replace it with something 

benign in order to fool over-curious analysts (and testers). 



Performance testing 

While the detection rate of a product is important, it will not be very useful in terms of protecting its 

users if it takes too much time to identify a program as clean or malicious, or if it slows the system 

down to the speed of a snail, since it will most likely be either disabled or completely removed from 

their machines. Thus, testing the performance and resource usage is an important component of any 

comprehensive “full product” test. 

One very common approach is to test the slowdown introduced by the product’s resident protection 

when it monitors activities in the system and tries to warn the user when something malicious is 

trying to enter the computer (as when copied from another system or downloaded from the Internet, 

for example). Since testing should be done in automated fashion, this particular aspect is usually 

tested by simulating certain activities which are likely to be intercepted by the antivirus – usually by 

copying and/or creating a large number of files and measuring the overhead introduced by the 

measured product. 

While there is nothing wrong with measuring this type of overhead, the basic question is usually left 

unanswered – how closely does this scenario simulate what real user is going to experience? Do 

users really copy large numbers of files here and there? [10] If so, what kind of files are they? Such 

questions need to be answered before one can determine how relevant the results of such test really 

are. 

It is usually expected that executables (and perhaps archives) introduce the largest overhead – the 

first because they’re most often holders of malicious code and thus need to be analysed very 

thoroughly, and the second because they tend to be very large. But how often do these files get 

moved around the disk? Perhaps during the installation of a new application or an update of an 

existing application (unless the user is a developer who compiles new applications more often than 

Joe User, but even then the new executables are probably not generated that often). Isn’t it more 

likely that photos are downloaded from digital cameras, or songs downloaded from the Internet, and 

that these are the objects that users tend to copy the most? However, these tend to introduce very 

little extra delay – simply because they’re only rarely usable for nefarious purposes, and searching 

for the few potential dangers that could be hiding in them can be done very quickly. 

Thus, this kind of testing presents an awkward dilemma – either test something that is easily 

measurable, but happens only rarely, or look at something insignificant which happens often. 

Unfortunately, it seems that the first choice tends to be the one found more often in existing tests, 

because consumers have got used to the fact that it’s easy to demonstrate huge and measurable 

differences among various AV products, even though those differences have little or no significance 

in real-life scenarios. 

Clearly, the best approach to this type of measurement is to start by building profiles of typical users 

(or even better, class of users – since programmers tend to behave differently from gamers, who 

aren’t very much like office workers, etc.). [11] This approach allows the same type of activity to be 

either replayed or simulated repeatedly so that the relevant measurements can be performed. 

Otherwise, the results are going to say very little about the real world. 

Conclusion 

We’ve presented a few examples of how easy it is to test an antivirus product and produce results… 

which mean nothing at all. The list is not comprehensive by any means – but the problems 

presented are the ones we tend to encounter most often. Some of the methods can be corrected by 

taking the advice described here, but some of them might need to be abandoned and replaced by a 

completely different approach. Time is a precious resource and poor tests waste too much of it for 

vendors, who could have used it for real improvement of their products, fine-tuning for protection 

in the real world rather than for optimized performance on the testers workbench. After all, good 

real-world testing helps both the consumers/users and the producers/vendors – so the sooner the 



flagrant flaws are corrected, the better  
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