
MAC HACKING: THE WAY TO BETTER TESTING? HARLEY & MYERS

1VIRUS BULLETIN CONFERENCE OCTOBER 2013

MAC HACKING: THE WAY TO
BETTER TESTING?

David Harley
ESET, North America

Email david.harley.ic@eset.com

Lysa Myers
Intego, USA

Email lysamyers@gmail.com

ABSTRACT

Anti-malware testing on the Windows platform remains highly
controversial, even after almost two decades of regular and
frequent testing using millions of malware samples. Macs have
fewer threats and fewer prior tests on which to base their
methodology, so establishing sound mainstream testing is even
trickier. But as both Macs and Mac malware increase in
prevalence, the importance of testing software intended to
supplement the internal security of OS X increases too.

What features and scenarios make Mac testing so much
trickier? We look at the ways in which Apple’s intensive work
on enhancing OS X security internally, with internal detection
of known malware, has actually driven testers back towards the
style of static testing from which Windows testing has moved
on. And in what ways might testing a Mac be easier? What can
a tester do to make testing more similar to real-world
scenarios, and are there things that should reasonably be done
that would make a test less realistic yet more fair and accurate?
This paper examines the testing scenarios that are unique to
Macs and OS X, and offers some possibilities for ways to
create a test that is both relevant and fair.

1. The testers dilemma: static testing in a dynamic
threatscape.

2. Reconfi guring the environment and staying real-world.

3. Sample management and expectation management.

4. Mac anti-malware testing: the next generation.

5. What this tells us about testing on other platforms.

INTRODUCTION

AMTSO’s sometimes stormy history [1], many years after the
anti-malware industry’s early attempts to offer guidance to
the embryonic testing industry [2], indicates how controversial
testing on the Windows platform can still be. Surely Mac
testing, with a tiny estimated total sample population
compared to the tens of millions of known Windows-targeting
samples, must be less contentious, with few threat families and
generally lower infection rates?

However, the challenges on testing Windows security
products are not the same as those on OS X, or even iOS or
Android. Each operating system is its own ecosystem, and has
its own security challenges and assets. The threats for each
platform refl ect those, as should the products and tests that
evaluate them.

The comparatively small number of threats for OS X at fi rst
glance seems to be a boon for testers: fi nding a statistically

meaningful number of samples isn’t diffi cult for a tester with a
comprehensive, up-to-date collection. Testing with all known
malware may be almost as quick – for a static test, at least – as
using a smaller percentage of the most prevalent samples or
families. But the diffi culty in choosing relevant samples
remains, for completely different reasons. In recent years, the
handfuls of threats affecting the wider base of Mac users have
affected increasingly dramatic numbers of users.

In 2012, Flashback pushed the number of infected machines
way, way up to 600,000 – 700,000 [3], an impressive number
when you consider that while some Windows outbreaks seem a
lot larger, the Windows market share is very much greater [4].
But Flashback was hardly the only threat to affect Mac users.
Without Flashback’s striking impact, the upward trend is more
gradual, but its signifi cance as an indicator should not be
dismissed as an outlier. In fact, the percentage increase in the
number of threats over the last year or two has been dramatic
(something in the order of 100%), but that is in part because
the starting fi gure was so low [5].

Comparison between the prevalence of Confi cker and
Flashback may be misleading but does represent a gradual
convergence between the two platforms in (fi nancial)
motivation [6]. From the outset, many profi t-motivated threats
for OS X have been ‘multi-platform’ or were created by the
same gangs that have long been attacking Windows users [7].

The most consistent recent growth area in Mac malware has
been targeted attacks, not generic, untargeted malware. OS X
almost seems to attract more (proportionally speaking) in the
way of APTs [8, 9], mostly targeting Non-Governmental
Organizations (NGOs), presumably for political reasons [10].
Statistics may also be misleading because in some cases, once
samples are shared Apple embeds some form of
countermeasure into the OS itself.

Apple and Microsoft demonstrate comparable performance
over time on vulnerability patching and proactive defensive
technologies, like application sandboxing. These two
companies have adopted very different approaches when it
comes to informing the general public and the security
industry about their actions, though the increasing volume of
Mac malware has seen Apple move towards a closer but not
particularly public relationship with the anti-malware industry.
Apple’s muted approach to relations with the security industry
and its inclusion of its own simplistic anti-malware component
in OS X has introduced unexpected complexities into the
product-testing arena.

PHILOSOPHY AND SECURITY

Even in the 1990s, we didn’t really want to see Apple produce
a Mac anti-virus analogous to Microsoft’s ill-fated fi rst attempt
at bundling anti-virus with the operating system [11].

Over the lifetime of OS X, Apple security research has gone
beyond denial (‘there are no Mac viruses’) to cooperating with
the anti-malware industry. While most of the layers of OS X
system security are generic (and directly comparable with
similar defensive layers in recent Windows versions [12])
Apple has included signature detection within the operating
system with XProtect [13]. While XProtect – unlike Microsoft
Essentials, incorporated in Windows 8 into Windows Defender
– cannot be directly compared to a full-blown commercial
anti-virus/anti-malware product, it is close enough to raise
similar concerns.

MAC HACKING: THE WAY TO BETTER TESTING? HARLEY & MYERS

2 VIRUS BULLETIN CONFERENCE OCTOBER 2013

‘I am concerned that Apple may not take the
threat seriously enough to produce and maintain a
consistently effective defence: while you can argue that
any defence is better than none, … in the long run …
mediocre protection would do more harm than good
… because Apple’s customer-base will tend to
overestimate the effectiveness of any measure Apple do
take, the same way that they already overestimate the
value of the free anti-malware tools already available.’ [11]

XProtect functionality is far narrower than the optional MSE
engine or an independent anti-malware solution with true
on-access capability, though some of that functionality is also
present in a fully up-to-date OS X system with full security
enabled [12, 13]. Critically, the range of threats it detects is
limited, as is the range of vectors it covers. Yet it goes further
in its integration with the OS than Microsoft’s solution. The
use and choice of an anti-virus package or security suite is
voluntary up to the point of installation, and even then it can
be confi gured in order to reduce its impact on the system.
XProtect and Gatekeeper are not immovable, but their
integration into the system is harder to resist (and we’re not
saying that the everyday user should resist), they impact
directly on the functioning of third-party security software,
and they’ve dramatically modifi ed – and compromised – the
approaches available for OS X product testing.

From a testing perspective, there are two main components
within OS X that need to be considered: XProtect and
Gatekeeper. Each takes a slightly different approach to
preventing malicious fi les from executing, and the effects will
differ depending on what level of protection the user has
elected to enable. XProtect is comprised of two fi les:
XProtect.plist and XProtect.meta.plist.

XProtect.plist
XProtect.plist is intended to help detect malware purely
reactively [14]. The detections are quite specifi c, far from
comprehensive, and there is no heuristic or generic detection
to help detect new malware or variants. However, it effectively
invalidates dynamic testing on systems where the sample is
known and detection has been added to XProtect.plist.

XProtect.meta.plist
This component has recently been used to take a higher-level
approach to preventing potential malware attacks, primarily
by preventing older browser plug-ins (namely Java and Flash)
from working. In emergency, zero-day situations, Apple has
used this to completely disable plug-in components.

Gatekeeper
Gatekeeper is OS X’s answer to the walled garden of iOS,
allowing users to reject apps to different, specifi c levels based
on whether Apple-approved developers have signed the code,
or whether Apple approved the app itself.

It has three basic settings [13]:

• install and run only apps from the Mac App Store

• also install and run apps that have a Developer ID

• install and run apps from anywhere.

Control-clicking allows the user to override his default
setting, so as with Alan Solomon’s perfect anti-virus [15], the
decision on whether to install remains with the user.

Gatekeeper can be helpful when a threat relies solely on
social engineering to get you to infect your system but if the
malicious app is signed and appears legitimate, or exploits a
vulnerability not (yet) patched in order to install silently, it is
ineffective.

Both Gatekeeper and XProtect will ignore a fi le copied from
fi xed media or via applications that aren’t on its select list of
applications to monitor, or if it’s one of the fi le-types OS X
considers safe. And neither monitors fi les on egress.

One consumer organization’s test is notable for (in our
opinion) inappropriate and ill-conceived advocacy for the
(Windows 8) operating system as a complete solution to the
malware problem, but asks one very pertinent question:
‘… would you trust security software built into your
computer’s operating system?’ Well, for many people –
including many Apple users – the answer is clearly yes, but
should they? At any rate, should that trust be absolute?
[16, 17]

Either way, these utilities have a signifi cant impact on how
testing needs to be set up to accurately refl ect how a product
performs on a real-world Mac.

STATIC TESTING IN A DYNAMIC
THREATSCAPE
Comparative testing in the Mac world introduces an extra
competitive layer. Products are not only in competition with
each other, but with Apple, in that dynamic or on-access
testing is only practical with samples for which Apple hasn’t
implemented signature detection yet or with samples that
XProtect sigs won’t catch in a real-life infection scenario.

Gatekeeper can be overridden manually, though that might
still be a problem during an intensive test unless the
Gatekeeper response is automated, or the utility is disabled
completely [18].

The limitations of the signature-based XProtect.plist utility
mean that it can be ‘evaded’. Certainly if you’re able to test
before an XProtect signature is added, it’s unlikely that the
utility will interfere with that testing segment, though static
batch testing could still be derailed by the inclusion of
samples for which a signature does exist.

That window before XProtect covers a new threat discovered
by Apple’s own or other researchers can be days or weeks
wide, leaving machines that are unprotected by mainstream
anti-malware exposed to potential infection. Not all threats
detected by anti-malware ever get added to XProtect: malware
that is less ‘dangerous’ or prevalent never makes it into
XProtect, which is unfortunate if you’re one of the few victims.
(Bear in mind that many recent Mac threats are highly targeted,
aimed at activists among particular ethnic groups and NGOs.)

The window of opportunity that is available to the malware is
also available to the tester. But that window closes when an
Xprotect signature has been added. At this time, Mac testers
are almost entirely focused on retrospective testing with
samples that are already ‘XProtected’ [19] or at any rate
assumed to be [20, 21, 22].

If a tester does need to work with retrospective ‘snapshot’
testing [23] of old or ‘extinct’ samples – and the paucity of
Mac-specifi c threats makes it impractical to do a snapshot
test that isn’t retrospective and doesn’t use ‘stale’ samples –
the question arises as to whether there is a meaningful

MAC HACKING: THE WAY TO BETTER TESTING? HARLEY & MYERS

3VIRUS BULLETIN CONFERENCE OCTOBER 2013

distinction between ‘stale’ and extinct [24]. There are
presumably still systems carrying system-targeting malware
from OS9.* and earlier, and it’s probable that all commercial
anti-malware detects it, but it’s unlikely that any tester uses it.
(Yet we still see Windows-oriented tests that include antique
DOS viruses: indeed, ESET telemetry indicates that a steady
trickle of boot sector viruses is still traversing the threatscape,
many years after Windows 95 is supposed to have killed them
all off [25]). Confi cker-infected machines continue to trip
alarms even though the Confi cker botnet itself is essentially
gutted, and some marketing-oriented sources suggest that the
number of machines still infected with Flashback is
surprisingly high. If so, it may be due to people running
outdated versions of the operating system. In Apple’s case,
this could be because of hardware that isn’t supported by
recent OS versions.

The tester with a preponderance of stale samples can simply
disable XProtect, much as Flashback did [26]. But is this
suffi cient?

Disabling system-integrated protection (including both
Gatekeeper and XProtect) moves you away from the ‘real
world’, at least as most people experience it. Not only is the
system ‘untypical’ of real-life user experience, but disabling
one aspect of the inbuilt security may break something else. If
you’re testing in a live network scenario, you may have just
introduced a risk to other vulnerable systems [27, 28].

Dynamic testing on an unpatched, de-XProtected system or
pre-XProtect OS is perhaps real-world in the very limited
sense that unpatched and un-updated systems do undeniably
exist in the real world, though the number of up-to-date
scanners that will run pre-Snow Leopard (OS X 10.6) has
already decreased dramatically. And something feels very
wrong about using obsolescent OS system versions (unless
you’re doing Virus Bulletin/ICSA Labs/certifi cation-test-style
platform-specifi c tests) in order to test an additional layer of
security that can’t be tested on a current OS version. And
‘breaking’ a current operating system (or, indeed, an app
under test) in order to isolate a single layer of tested
functionality is a long way from the principles of
whole-product testing and isn’t representative of the average
customer’s real-world experience.

But how else do you ascertain whether a product’s specifi c
detection of sample X differs between on access and on
demand?

Could testers grab a test image from the fi rst day of the time
period they intend to test, so that any malware that came out
between that time and the fi rst day of testing would be tested
as if it’s the time period before XProtect updating? There is
usually a several-day to several-week lag in updating against
even the most prevalent malware. This would be very much
like the freezing of test sets and product versions/updates
formerly much used [29]. If it seems a bit retro, it
nevertheless represents a step or two forward from static
testing. We might even see a return for Time to Update (TtU)
testing, though there are some of us who would hate to see it
[30]. However, sound real-time testing could address this
acceptably. As each threat is acquired, it’s run against the
products under test. At the end of the test period, the
individual results can be compiled into the fi nal report. The
relatively infrequent appearance of new OS X-targeting
threats makes this scenario much more feasible and infi nitely
less resource-intensive than taking the same approach for

Windows testing, where tens of thousands of new, unique
malicious binaries are processed each day.

ON DEMAND VERSUS ON ACCESS
How many Windows users nowadays routinely run an
on-demand scan (i.e. unless they have particular reason to
believe that their machines have been infected)? More than
the number of people who still run sheepdip systems, perhaps,
but far fewer than the total number of people who run security
software. Perhaps because fewer pundits advise them to, or
because they prefer the minor performance hit that comes
when a fi le is scanned as it’s opened to the greater hit of a
whole-disk scan (even if it’s a background scan). Even if
they’re not particularly familiar of the meaning of terms like
sandboxing, emulation, behaviour analysis and so on as
they’re used in anti-malware technology, they might
nonetheless be aware that some scanners are better at
detecting some threats on execution than they are at detecting
them by passive scanning.

In the Mac arena, the opposite is true, at least in the
perception of some testers. As one of the authors wrote about
a review in Thomas Reed’s Tech Corner [23]:

‘[Reed] states that he is testing without the on-access
scanner, which [he believes] is how detection would
happen in most real-world situations.’

Is this really the case today? Frankly, we doubt that users of
commercial Mac anti-malware do heavy on-demand scanning
nowadays except in circumstances like these:

• In some corporate environments where security staff
have an old-school view of the necessity and desirability
of running a regularly scheduled on-demand scan. We
suspect that the same is likely to be true of some
Windows-using corporates.

• In some environments where a not-altogether-
commercial grade on-demand scanner is still considered
to be suffi cient, either as an email fi lter or for scanning
fi les on disk via a third-party app.

In fact, the use of static testing of on-demand components
rather than whole product testing remains a common scenario
amongst testing labs, sometimes because static testing is
cheaper and, in principle, simpler to implement [31].

In many cases, though, modern scanners use emulation in
on-demand scanning so that a program being scanned is
allowed to execute in a virtualized or emulated environment.
Nonetheless, testing that assumes that ability in all contexts is
not maintaining a level playing fi eld. And in the Windows
environment, it’s getting hard to justify something that falls
so short of whole-product testing: the all-folder on-demand
or scheduled scan is the exception rather than the rule. If it
persists in some commercial-grade Mac security products,
that may be because malicious Mac-directed programs have
less need to be technically complex than their Windows-
directed siblings, and that may be refl ected in comparatively
laid-back anti-malware technology. It’s not surprising if
vendors don’t use resource-intensive technologies that are not
– or not yet – needed in the context of OS X.

Mac product testing, however, is largely based at present on
the (increasingly inaccurate) assumption that the diffi culties
of on-access scanning need not be addressed since Mac
malware is less likely to be self-protected by the kind of

MAC HACKING: THE WAY TO BETTER TESTING? HARLEY & MYERS

4 VIRUS BULLETIN CONFERENCE OCTOBER 2013

anti-forensic obfuscation that characterizes so much Windows
malware.

RECONFIGURING THE REAL WORLD

Can a test run on a fully patched system running the latest
OS X versions be on-access – i.e. where potentially malicious
objects are scanned when a fi le is accessed (opened, executed,
copied and so on)? Only if the samples aren’t detectable by
active system utilities, because otherwise the OS won’t allow
malware to execute. Testers don’t necessarily have time to
spend wrestling with OS X internals or have the resources to
(a) acquire, validate and test with samples before the
XProtect.plist window closes, and (b) test longitudinally (i.e.
over time) so as to accommodate that window of opportunity.
Testers that do this routinely tend to be certifi cation testers
who have the capacity to run longitudinal testing because
that’s essentially what their vendor customers are paying for.

Admittedly, there are ways to ‘de-patch’ the relevant
components of the OS, but is that real-world testing? If the
OS is able to intervene because the malware is a variant that it
recognizes, that’s real-world in a sense, but it’s not
whole-product testing. At a time when mainstream testers are
anxious to implement whole-product testing in accordance
with AMTSO [32] guidelines, it seems that testers simply
aren’t able to do so on OS X, whether for technical reasons or
because of resource issues. (There are analogous issues on
other platforms, especially mobile devices.) And that’s OK as
long as it’s clear to readers of test reviews that what they’re
looking at is a compromise, not a perfect refl ection of a
product’s capabilities in the real world. Not only because it’s
not a guide to its capability regarding malware that isn’t
already neutralized, but because static testing isn’t conclusive
proof of the detection that it would offer (or would have
offered) in the absence of the operating system’s own
defences.

It has been suggested that there’s less differentiation between
on-demand and on-access scanning results in a Mac test
because Mac products don’t use behaviour analysis. There is,
in fact some truth in this: many Mac scanners do make less
use of advanced proactive detection techniques than
commercial-grade Windows scanners, even when they come
from a company that has a Windows product range. This is
especially true in the context of Mac-specifi c threats, and in
fact some products are little more than a Mac-friendly shell
around a ported Windows or Linux engine with enhanced
awareness of Mac and cross-platform threats, but less
sophistication in the range of detection technologies
employed. However, it’s an oversimplifi cation to imply that
any but the most basic scanners make no use of behaviour
analysis.

MAC ANTI-MALWARE TESTING: THE NEXT
GENERATION
Mac anti-malware is more critical in terms of early detection
(pre-XProtect), at least for malware that is widespread enough
to rate an XProtect signature. It’s even more critical if you’re
a victim of malware that never gets an XProtect signature: so
maybe we should talk about criticality in terms of (a) early
detection, (b) low-prevalence malware, and (c) removal/
disinfection – there is no removal function in XProtect except
for malware that Apple perceives as an outbreak-level threat.

In other words, in the Mac arena, the whole concept of a
snapshot test is fl awed: a better route is to test longitudinally
(response-based, ongoing, real-time). Maybe all detection
testing should be longitudinal, but it may be easier to get
away with batch testing over a few days with Windows
products.

However, longitudinal testing is not so much a test of raw
detection as it is a test of responsiveness and the product’s
relationship with the other players – cooperation with other
vendors, with Apple, other security sectors, external
agencies... That’s not a bad thing, but it’s not particularly
tester-friendly because it pushes them towards expensive
time- and resource-intensive whole-product testing
methodologies that their clients may not want to pay for.

In fact, good relationships at that level actually reduce the
differences between vendors, whereas testers are often
obliged to exaggerate the differences in order to generate a
ranking – more often than not, in order to meet the demands
of the magazines, consumer organizations and so on who are
frequently their customers, so testers would have to focus
more on other aspects (whole-product testing) to restore
differentiation.

LIES, DAMN LIES, STATISTICS AND
TESTING

Statistical relevance is a highly sensitive topic in testing [33]:
even if we sidestep the Sisyphean task of raising the general
ability to interpret – let alone generate – test results correctly.
One of the less daunting aspects of the Mac testing problem is
the relatively small size of the total Mac-specifi c sample
population: how many years will it take to generate the same
number of unique malicious samples as we currently see for
Windows in a single day? Thus, a number of samples that
would seem ridiculously small for a Windows test (or
pseudo-test [34]) could be considered quite comprehensive in
the Mac context [23]. However, it can certainly also be argued
that the manageability of the sample pool means that we
could reasonably expect a very high proportion of the
potential population to be used in a test – though this may
vary according to test objective and the functionality under
test – and still be affordable.

It’s only fair and responsible to make it clear what
approximate proportion of the presumed total threat
population your sample set represents, irrespective of
platform. Statistical validity – in the limited sense of the
sample set being representative of the total population is more
achievable as long as testers can acquire suffi cient samples in
a timely manner. We suspect, though, that even some
mainstream testers may not be as well connected in Mac
sample acquisition sharing as they are in the Windows arena.

Clementi [35] points out that prevalence can still play a part
even though the total volume of Mac malware remains low.
He cites the hypothetical example of malware which is highly
targeted – and therefore of very low prevalence – that may or
may not be shared with other vendors but falls into the hands
of testers. Certainly there are testers who encourage vendors
to provide them with samples other companies are unlikely to
detect, probably in the hope of establishing a clear ranking. Is
that a fair approach, or is it allowing vendors with an ‘all’s
fair in love and testing’ ethic to game the test? We believe that
better cooperation between vendors and testers is a better way

MAC HACKING: THE WAY TO BETTER TESTING? HARLEY & MYERS

5VIRUS BULLETIN CONFERENCE OCTOBER 2013

to address the issue of prevalence than encouraging artifi cial
infl ation of scores by cherry-picking samples.

A further diffi culty arises with sample acquisition and
sharing. While applications and many other kinds of Mac
program look like a single entity represented by a single icon
(e.g. Preview.app), examination with ‘Show Package
Contents’ generally shows the ‘bundle’ to contain a directory
that may contain a wide variety of fi les, subfolders, resources
and so on. Where a malicious application takes the form of an
.app bundle – it could in theory be one of many bundle types
– vendor detection may be limited to unequivocally malicious
bundle components. However, if the full bundle is not
available to the tester, the malware cannot be fully installed,
making on-access detection impractical.

A related point holds for Windows, especially for web-based
malware. Vendors have rightly queried test results that include
malware components that are not of themselves malicious in
other contexts. Communication between the vendors and
testers continues to be very important, as not all parts of
malware can – or should – be detected in all cases.

TESTING ON OTHER PLATFORMS
These issues invite speculation about what we might or
should expect from third-party security software in an
environment that tries to plug its own gaps non-generically,
and what we might expect from testers.

Of course, any responsible vendor attempts to reduce the
operating system attack surface generically. If the future of
personal computing is the mobile device – it probably isn’t, at
least not exclusively, but that’s another debate – it’s not
surprising that recent mobile operating systems attempt to
build in strong generic protection, learning perhaps from the
mistakes of early generations of operating system – not only
desktop systems, but mobile. (Think Symbian [36].)

Apple’s own iOS includes an ‘iron hand’ approach to
app-sandboxing that effectively precludes the use of
full-strength malware-detection software, though on-demand
scanners for iOS do exist [37] and there are a number of apps
that offer some form of web fi ltering (malicious or
child-unfriendly URLs, QR code reading, and so on). It also
imposes a layer of App Store whitelisting that has so far kept
iGadgets an almost entirely malware/anti-malware-free zone,
though malware-free is not the same as totally secure [38].
However, virtually all malware native to the platform relies on
jailbreaking [39], so that an approved on-demand scanner is
likeliest to detect:

• malware that isn’t native to iOS but might use the
iGadget as a gateway to vulnerable systems
(heterogeneous malware transmission)

• borderline apps that are closer to the ‘possibly unwanted’
class than to unequivocal malware

• iOS-specifi c malware that can only take hold on a
jailbroken device.

Apple acts quickly to fi x vulnerabilities that facilitate
jailbreaking, but the number of devices that are or have been
jailbroken probably runs into millions, according to Cydia et
al. Nevertheless this promptitude of action has certainly
contributed to the scarcity of vulnerabilities that has made the
process by which jailbreak teams chain together those
vulnerabilities more diffi cult. The work needed to create

malware on iOS 6 is far, far greater than it would have been
on earlier versions. The combination of the tireless efforts of
jailbreakers and Apple’s striving to keep its walled garden has
been rather benefi cial to the health of the iOS ecosystem.

It has been suggested that security software might itself be
made available for jailbroken devices [40] with enhanced
functionality (posing both practical and ethical issues in terms
of Apple’s own opposition to relaxing its grip on the
marketplace), and it’s hard to see how conventional detection
on an approved device could be tested without creating a
thoroughly artifi cial scenario.

Although Windows 8 RT was surprisingly quickly targeted for
what amounts to a tethered jailbreak [41], it uses a similar
model to Apple’s: only Microsoft-approved software (a handful
of Microsoft’s own desktop applications and Windows
8-specifi c apps from the Windows Store) can execute on an
unsubverted machine. The operating system includes Windows
Defender and Smartscreen, and commercial RT-specifi c
anti-malware has several times the scarcity value of hen’s teeth.

For both these platforms, therefore, it’s hard to see
commercial advantage right now to serious anti-malware
testing in any form.

Android, however, is a different kettle of phish (and more to the
point, trojans). Google has damaged its credibility somewhat,
attempting to divert customer attention from any suggestion of
risk to its customers by lambasting the ‘scammers and
charlatans’ of the mainstream security industry [42, 43, 44]. In
the real world, however, Android has been building up – or
down – its reputation as (in terms of vulnerability to malware)
‘the new Windows’ (not to mention the new Symbian) [45, 46].
A recent report [47] indicates that out of 149 recent mobile
threats (families and variants), 136 are specifi c to Android (the
rest being specifi c to the declining Symbian platform). Google
also has mechanisms for checking/approving apps submitted to
its own Google Play store and is capable of disabling download
of malicious apps retrospectively and remotely. However, it
doesn’t prevent Android users downloading apps from
unregulated repositories, and indeed has the unenviable
distinction of having carried hacked apps in its own store [48].

Consequently, Android is considered the malware- and anti-
malware-richest mobile environment. There is a plethora of
both free and for-fee scanning apps from mainstream security
vendors as well as less-recognized sources, and a suffi ciency
of samples is available for realistic on-demand and
on-installation testing [49]. Furthermore, tests already carried
out suggest a wide range of capability between products
(contrast between free and mainstream detection scores is
particularly striking [50]), suggesting a very real need for
continued testing that allows end-users to make an informed
evaluation of the options available to them. We note also that
Android anti-malware is already receiving academic scrutiny
– in some instances somewhat tied to a somewhat old-school
PC-oriented view of anti-malware technology [51]. Yet this
may be a precursor to future changes in threat technology. It
may well also be that AMTSO’s mobile testing guidelines,
currently in process, will be primarily focused on
Android-focused testing in the fi rst instance.

CONCLUSION
A smaller threat population has potential statistical advantages,
but there is little history of dynamic or whole-product testing

MAC HACKING: THE WAY TO BETTER TESTING? HARLEY & MYERS

6 VIRUS BULLETIN CONFERENCE OCTOBER 2013

for OS X. There are other problems, though: Apple’s (only
partially) successful interventional model, varying levels of
experience (both in the operating system and in testing) and
inconsistency in OS-X-specifi c threat tracking.

Is OS X so well-armoured that the only time you need a
modern anti-virus product is in the following scenarios?

• For detecting new malware that is capable of evading
Apple’s current defences. (Even though Mac scanners
tend to be weaker on proactive detection than their
Windows equivalents, commercial-grade software
includes generic detection capabilities generally superior
to XProtect signatures.)

• For detecting threats that aren’t really on Apple’s radar.
(This includes cross-platform malware, threats targeting
platforms like Java that Apple doesn't consistently support,
heterogeneous transmission of non-Apple malware, threats
that rely on social engineering rather than sophisticated
binaries, and Possibly Unwanted Applications.)

• For detection by signature for the purpose of
remediation. (Larry Bridwell suggests [52] that signature
detection is mostly for remediation, whereas
contemporary anti-malware is more about protection by
behaviour analysis, traffi c analysis, active heuristics,
sandboxing, reputation – or should be...)

If that’s the case, testers certainly need to be moving away
from static, snapshot testing to a response-based, ongoing,
real-time methodology, focused not only on detection but on
remediation.

It could also be said that paying for commercial anti-malware
is not just protection for an individual machine, but also
constitutes a kind of (voluntary) tax you pay for the kind of
specialist hard-core analysis of individual samples that other
technologies make use of but don’t acknowledge. How
effective would alternative technologies be if the kind of
research and analysis carried out by anti-malware labs
stopped happening because no-one will pay for commercial
products anymore [53]? How much free but
commercial-grade anti-virus would survive if there were no
for-fee AV-incorporating security solutions to underwrite the
costs of producing free versions?

Apple’s relationship with the industry highlights the need to
consider this question. There’s a degree of communication
and exchange of malware-related information between Apple
and the security industry that would have been unthinkable
not so long ago, and Apple’s customers are safer for it. But
not only is the average customer unaware of that relationship,
he believes that Apple is protecting him all by itself and with
100% effi cacy. And is then taken aback at fi nding that Apple
isn’t detecting all the samples in a test [20].

It’s not necessarily wrong to use static testing, as long as you
make very, very sure that your audience is aware of the
limitations of that approach [19]. Unfortunately, testers aren’t
always very good at admitting all the limitations of their
methodology, just as vendors – or at any rate their marketing
departments – are often reluctant to admit the limitations of
their products. No wonder it’s so diffi cult for the consumer
(individual or corporate) to come to a fully informed buying
decision.

We do not have all the answers to resolving this tension, but
without such resolution, we risk a breakdown – in the Mac

context at least, and probably in a much wider context – of
the symbiotic relationship between vendors and testers, and
that will hurt both parties. At the very least, the willingness of
vendors to expose themselves to testing on OS X will be
compromised.

ACKNOWLEDGEMENTS

The authors would like to thank friends and colleagues in the
security and testing industries for sharing their own thoughts
on these issues with us. In particular, Andreas Clementi,
Peter Stelzhammer, Larry Bridwell, Aryeh Goretsky and
Andrew Lee.

REFERENCES

[1] Harley, D. After AMTSO: a funny thing happened on
the way to the forum,.EICAR conference
proceedings, 2012. http://smallbluegreenblog.
wordpress.com/2012/05/10/after-amtso-a-paper-for-
eicar-2012/.

[2] Bontchev, V. Analysis and Maintenance of a Clean
Virus Library, 1993. http://www.people.frisk-
software.com/~bontchev/papers/virlib.html.

[3] Cluley, G. http://nakedsecurity.sophos.
com/2013/04/03/fl ashback-mac-malware-author/.

[4] Cobb, S. http://www.welivesecurity.com/2013/01/31/
straight-facts-about-mac-malware-threats-and-
responses/.

[5] ESET. http://www.eset.com/us/mac-malware-myths-
and-facts/.

[6] Krebs, B. http://krebsonsecurity.com/2013/04/who-
wrote-the-fl ashback-os-x-worm/.

[7] Cluley, G. http://nakedsecurity.sophos.
com/2010/11/24/apple-mac-malware-short-history/.

[8] Harley, D. http://macviruscom.wordpress.
com/2013/05/19/mac-spyware/.

[9] Myers, L. http://www.intego.com/mac-security-blog/
new-mac-spyware-discovered-osxdockster-a/.

[10] Harley, D. http://www.welivesecurity.
com/2012/12/04/spying-on-tibetan-sympathisers-
and-activists-double-dockster/.

[11] Harley, D. http://www.welivesecurity.
com/2009/08/26/mad-macs-beyond-blunderdome/.

[12] Myers, L. http://www.intego.com/mac-security-blog/
do-os-xs-built-in-security-features-offer-good-
enough-protection/.

[13] Apple. http://www.apple.com/osx/what-is/
security.html.

[14] James, P. http://www.intego.com/mac-security-blog/
how-the-anti-malware-function-in-apples-snow-
leopard-works/.

[15] Solomon, A. The Perfect Antivirus.
http://groups.google.com/group/alt.comp.virus/msg/
d3d5bd6bf37004b8?pli=1.

[16] Harley, D. http://antimalwaretesting.wordpress.
com/2013/01/25/which-hunting/.

MAC HACKING: THE WAY TO BETTER TESTING? HARLEY & MYERS

7VIRUS BULLETIN CONFERENCE OCTOBER 2013

[17] Moreton, J. http://conversation.which.co.uk/
technology/windows8-anti-virus-security-software-
tops-table-microsoft/.

[18] University of Chicago IT Services.
http://answers.uchicago.edu/page.php?id=25481.

[19] Harley, D. http://antimalwaretesting.wordpress.com/
2013/01/10/mac-testing-static-versus-dynamic/.

[20] Reed, T. http://www.reedcorner.net/mac-av-
detection-rates/.

[21] Reed, T. http://www.reedcorner.net/mac-anti-virus-
testing-01-2013/.

[22] Harley, D. http://www.infosecurity-magazine.com/
blog/2013/1/29/mac-av-testing-how-useful-is-it/781.
aspx.

[23] Myers, L. http://www.intego.com/mac-security-blog/
that-anti-virus-test-you-read-might-not-be-accurate-
and-heres-why/.

[24] Reed, T. http://www.reedcorner.net/variant-of-
smssend-slips-past-xprotect/.

[25] Goretsky, A. Personal communication.

[26] Haslam, K. New Version of Flashback Eludes
Apple’s XProtect, 2012. http://www.macworld.co.uk/
macsoftware/news/?newsid=3353360.

[27] AMTSO Guidelines for testing Network Based
Security Products. http://www.amtso.org/amtso---
download---guidelines-for-testing-network-based-
security-products.html.

[28] AMTSO Best Practices for Testing In-the-Cloud
Security Products. http://www.amtso.org/amtso---
download---amtso-best-practices-for-testing-in-the-
cloud-security.html.

[29] AV-Comparatives. http://www.av-comparatives.org/
images/stories/test/ondret/avc_report25.pdf.

[30] Lee, A.; Harley, D. Anti-Malware Evaluation and
Testing, in AVIEN Malware Defense Guide for the
Enterprise, Ed. Harley, Syngress, 2007.

[31] Harley, D. http://www.infosecurity-magazine.com/
blog/2012/10/13/the-test-of-time/668.aspx.

[32] Anti-Malware Testing Standards Organization.
http://www.amtso.org/documents.html.

[33] Kosinar, P.; Malcho, J.; Marko, R.; Harley, D. AV
Testing Exposed. Virus Bulletin 2010 Conference
Proceedings. http://go.eset.com/us/resources/white-
papers/Kosinar-etal-VB2010.pdf.

[34] Bloggit, O.M. https://antimalwaretesting.wordpress.
com/2013/01/02/journalisms-dirty-little-secret/.

[35] Clementi, A. Personal communication.

[36] F-Secure. http://www.f-secure.com/static/doc/labs_
global/Research/Mobile%20Threat%20Report%20Q
3%202012.pdf.

[37] Intego. http://www.intego.com/mac-virus-barrier-ios.

[38] Harley, D. http://www.infosecurity-magazine.com/
blog/2012/7/20/pickpockets-in-the-app-
marketplace/602.aspx.

[39] Wismer, K. http://anti-virus-rants.blogspot.co.uk/
2012/02/is-iphone-really-malware-free.html.

[40] Townsend, K. http://www.infosecurity-magazine.
com/view/26013/ios-551-jailbreak-done-ios-6-
jailbreak-pending/.

[41] Wisniewski, C. http://nakedsecurity.sophos.
com/2013/01/08/windows-rt-jailbroken-shows-its-
windows-8-roots/.

[42] DiBona, C. https://plus.google.com/u/0/+cdibona/
posts/ZqPvFwdDLPv.

[43] Harley, D. http://macviruscom.wordpress.com/2011/
11/21/mobile-av-another-charlatan-scammer-hits-
back/.

[44] Harley, D. http://macviruscom.wordpress.com/2011/
11/21/memoirs-of-a-charlatan-scammer/.

[45] Harley, D. http://macviruscom.wordpress.com/2013/
03/11/android-malware-and-blaming-the-victim/.

[46] Cobb, S. http://www.welivesecurity.com/2013/03/11/
android-security-issues-does-a-microsoft-windows-
analogy-make-sense/.

[47] F-Secure. http://www.f-secure.com/static/doc/labs_
global/Research/Mobile_Threat_Report_Q1_2013.
pdf.

[48] Yeung, K. http://thenextweb.com/insider/2013/05/26/
british-broadcaster-sky-news-has-all-of-its-android-
apps-hacked-by-the-syrian-electronic-army/.

[49] AV-Comparatives. http://www.av-comparatives.org/
wp-content/uploads/2012/09/avc_mob_201209_en.
pdf.

[50] AV-Test: http://www.av-test.org/en/tests/mobile-
devices/android/mar-2013/.

[51] Rastogi, V.; Chen, Y.; Jiang, X. Evaluating Android
Anti-malware against Transformation Attacks,
NorthWestern University, 2013.
http://list.cs.northwestern.edu/mobile/
droidchameleon_nu_eecs_13_01.pdf.

[52] Bridwell, L. Personal communication.

[53] Harley, D. Anti-Virus: Last Rites, or Rites of
Passage? Virus Bulletin, February 2013.
http://geekpeninsula.wordpress.com/2013/05/01/
virus-bulletin-articles-1/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

